The geometry of nondegeneracy conditions in completely integrable systems
نویسنده
چکیده
2014 Nondegeneracy conditions need to be imposed in K.A.M. theorems to insure that the set of diophantine tori has a large measure. Although they are usually expressed in action coordinates, it is possible to give a geometrical formulation using the notion of regular completely integrable systems defined by a fibration of a symplectic manifold by lagrangian tori together with a Hamiltonian function constant on the fibers. In this paper, we give a geometrical definition of different nondegeneracy conditions, we show the implication relations that exist between them, and we show the uniqueness of the fibration for non-degenerate Hamiltonians. RÉSUMÉ. 2014 Dans les théorèmes de type K.A.M., on doit imposer des conditions de non-dégénérescence pour assurer que l’ensemble des tores diophantiens a une grande mesure. Elles sont habituellement présentées en coordonnées actions, mais il est possible d’en donner une formulation géométrique en considérant des systèmes complètement intégrables définis par la donnée d’une fibration d’une variété symplectique par des tores lagrangiens et d’un Hamiltonien constant sur les fibres. Dans cet article, nous donnons une définition géométrique de différentes conditions de nondégénérescence, nous montrons les différentes relations d’implication qui existent entre elles, et nous montrons l’unicité de la fibration pour les Hamiltoniens non-dégénérés. Annales de la Faculté des Sciences de Toulouse Vol. XIV, n° 4, 2005 pp. 705-719 (*) Reçu le 8 mars 2004, accepté le 14 décembre 2004 (1) Geometric Analysis Group, Institut für Mathematik, Humboldt Universitàt, Rudower Chaussee 25, Berlin D-12489, Germany. E-mail: [email protected] This paper has been partially supported by the European Commission through the Research Training Network HPRN-CT-1999-00118 "Geometric Analyis".
منابع مشابه
The geometry of nondegeneracy conditions in completely integrable systems (corrected version of fascicule 4, volume XIV, 2005, p. 705-719)
— Nondegeneracy conditions need to be imposed in K.A.M. theorems to insure that the set of diophantine tori has a large measure. Although they are usually expressed in action coordinates, it is possible to give a geometrical formulation using the notion of regular completely integrable systems defined by a fibration of a symplectic manifold by lagrangian tori together with a Hamiltonian functio...
متن کاملOn persistence of invariant tori and a theorem by Nekhoroshev
A Hamiltonian system in n degrees of freedom having n independent integrals of motion in involution is integrable [1]. When the system has a number s of independent integrals of motion greater than one, but smaller than the number of degrees of freedom, i.e. 1 < s < n, we say the system is “partially integrable”. In the early nineties Nekhoroshev stated, under suitable nondegeneracy conditions,...
متن کاملInfinitesimally stable and unstable singularities of 2 degrees of freedom completely integrable systems
In this article we give a list of 10 rank zero and 6 rank one singularities of 2 degrees of freedom completely integrable systems. Among such singularities, 14 are the singularities that satisfy a non-vanishing condition on the quadratic part, the remaining 2 are rank 1 singularities that play a role in the geometry of completely integrable systems with fractional monodromy. We describe which o...
متن کاملWhiskered and Low Dimensional Tori in Nearly Integrable Hamiltonian Systems
We show that a nearly integrable hamiltonian system has invariant tori of all dimensions smaller than the number of degrees of freedom provided that certain nondegeneracy conditions are met. The tori we construct are generated by the resonances of the system and are topologically different from the orbits that are present in the integrable system. We also show that the tori we construct have st...
متن کاملCompletely Integrable Bi-hamiltonian Systems
We study the geometry of completely integrable bi-Hamiltonian systems, and in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the af...
متن کامل